Nous sommes par conséquent en présence d'un environnement sept-octaédrique pratiquement identique à l'environnement sept-prismatique décrit par Carré, Flahaut, Khodadad, Laruelle, Rodier & Vovan Tien (1973).

Les atomes de soufre S(7) et S(9) ont la coordinence trois et ne sont coordinés qu'à des atomes d'indium.

Les atomes de soufre S(2), S(3), S(4) S(8), S(12) ont la coordinence quatre et se trouvent au centre de tétraèdres formés par les atomes de terbium et d'indium qui les entourent.

Les atomes de soufre S(1), S(5), S(6), S(10), S(11)ont la coordinence cinq. Ils sont situés approximativement au centre de pyramides à bases carrées dont les sommets sont indifféremment occupés par les atomes d'indium et de terbium.

Conclusion

On retrouve dans cette structure avec le terbium les environnements caractéristiques des lanthanides à coordinence sept ou huit. Les environnements tétraédriques et octaédriques de l'indium correspondent également à ceux que l'on a l'habitude d'observer dans ce genre de composé. Par contre, on peut mettre en évidence une cavité inoccupée formée par les atomes de soufre S(3), S(7), S'(7), S(9). On observe une agitation thermique de ces quatre atomes nettement plus élevée que celle des autres atomes de soufre (*B* compris entre 1,4 et 1,7 Å²). Cette cavité octaédrique est pratiquement assez grande pour pouvoir y introduire un atome d'indium ou de terbium, la distance du centre de cette cavité située à la cote z = 0,75 aux atomes de soufre S(7) et S(9) étant égale à 2,62 Å et celle aux atomes de soufre S(3) et S'(7) étant égale à 3,15 Å. Le centre de cette cavité est schématisée par le point *C* dans la Fig. 1.

Références

- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Oak Ridge National Laboratory Report ORNL-TM-305.
- CARRÉ, D., FLAHAUT, J., KHODADAD, P., LARUELLE, P. RODIER, N. & VOVAN TIEN (1973). J. Solid State Chem. 7, 321-336.
- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104– 109.
- GERMAIN, P. & WOOLFSON, M. M. (1968). Acta Cryst. B24, 91–96.
- TOMPA, H. & DE MEULENAER, J. (1965). Acta Cryst. 19, 1014–1018.

Acta Cryst. (1977). B33, 1166-1170

Dihydroxy-11 β ,17 β Méthyl-18 Nor-19 Pregnadiène-4,9 Yne-20 One-3

PAR JEAN-PAUL MORNON, GENEVIÈVE LEPICARD ET RENÉE BALLY

Laboratoire de Minéralogie–Cristallographie, associé au CNRS, Université P. et M. Curie, T16, 4 place Jussieu, 75230 Paris Cédex 05, France

(Reçu le 5 juillet 1976, accepté le 24 septembre 1976)

 $C_{21}H_{25}O_3$, orthorhombic, space group $P2_12_12_1$, a = 24.51, b = 16.82, c = 8.79 Å, Z = 8. The structure was solved by direct methods. Full-matrix least-squares refinement with identical weights converged at R = 0.049 and $R_{\omega} = 0.050$ for all the 3344 observed reflexions. The two independent molecules possess largely different general conformations. The molecules are linked by hydrogen bonds.

Introduction

Cette étude est consacrée à une deuxième forme cristalline du composé RU 2732, les résultats de l'étude de la première forme étant répertoriés dans un autre article (Lepicard, Delettré & Mornon, 1977). Les mesures d'intensité ont été effectuées sur diffractomètre Philips PW 1100 en utilisant la radiation Cu $K\alpha$. Seules les intensités des réflexions ont été mesurées; le fond continu résultant d'une série unique de mesures

Résultats

Fig. 1. (a) Longeurs de liaisons (Å), $\bar{\sigma} = 0,006$ Å. Le nombre supérieur concerne la molécule. A, le nombre inférieur la molécule B. (b) Même convention pour les angles de valence (°), $\sigma = 0,7^{\circ}$. (c) Même convention pour les angles de torsion (°).

effectuées en fonction de l'angle θ . La structure de ce composé a été déterminée sans difficulté à l'aide du programme *MULTAN*. L'affinement, par moindres carrés, des paramètres de position et d'agitation thermique des atomes s'est effectué normalement. Les 50 atomes d'hydrogène ont été positionnés sur série différence mais ils n'ont pas été affinés. Un facteur thermique isotrope légèrement inférieur à celui de leur atome porteur leur a été attribué. Le Tableau 1 donne les paramètres atomiques.*

La Fig. 1(*a*) et (*b*) regroupe les valeurs numériques caractérisant la géométrie moléculaire. Les longueurs de liaisons homologues sont très proches l'une de l'autre pour les deux molécules indépendantes ainsi que de celles de la première forme cristalline. Elles ne présentent pas de particularités notables en dehors de C(1)-C(2) pour la molécule A: 1,48 Å. Cette courte longueur traduit un phénomène particulièrement fréquent pour les composés 4–5, 9–10 diéniques; il s'agit d'une délocalisation des atomes C(1) et C(2) donnant naissance à un phénomène de 'flip-flap' pour la liaison C(1)-C(2). Dans le cas présent l'amplitude de cet effet est faible comme en témoigne la longueur C(1)-C(2) relativement peu éloignée de sa valeur normale.

Les angles de valence homologues, en dehors de ceux liés au phénomène affectant C(1) et C(2) et de ceux impliqués par l'orientation de 17β OH, diffèrent peu l'un de l'autre, notons toutefois que les différences sont plus importantes entre molécules A et B (de conformations générales fort différentes) qu'entre la molécule Bet la molécule de la première forme cristalline (de conformations générales très voisines). En ce qui concerne les angles de torsion, les différences entre molécules Aet B sont parfois importantes, particulièrement à la jonction des cycles B et C entraînant par la même les différences de conformations générales.

Pour les deux molécules indépendantes le groupe 17β OH est en orientation OH1 (Mornon, Delettré, Lepicard, Bally, Surcouf & Bondot, 1977), les angles de torsion C(16)–C(17)–O(17)–H(O17) valent respectivement 170 et 179°. Les groupes 11β OH sont en position décalée quasi idéale; C(12)–C(11)–O(11)–H(O11) valant respectivement 62 et 58°.

La stabilité cristalline est assurée en particulier par un réseau de liaisons hydrogène: O(11A)(x,y,z)- $H(O11) \cdots O(3B)(x, y-1, z)$: O(11A) - O(3B) 2.85 Å, O(11A) - H(O11) - O(3B)159°; O(17A)(x,y,z)- $H(O17) \cdots O(17B)(\frac{3}{2} - x, 1 - y, \frac{1}{2} + z): O(17A)$ O(17B) 2,84 Å, O(17A)-H(O17)-O(17B) 171°; $O(11B)(x,y,z)-H(O11)\cdots O(3A)(\frac{3}{2}-x, 2-y, \frac{1}{2}+z):$ O(11B) - O(3A) = 2,87 Å, O(11B) - H(O(11) - O(3A))125°; $O(17B)(x,y,z) - H(O17) \cdots O(3A)(x,y,z)$: O(17B)-O(3A) 2,84 Å, O(17B)-H(O(17))-O(3A)169°; CET(2A)(x,y,z)-H(CE2)···O(11A)(x,y,z + 1); CET(2A)-H(CE2)-CET(2A) - O(11A)3.29 Å. $CET(2B)(x,y,z)-H(CE2)\cdots$ O(11A)173°; et O(11B)(x, y, z - 1);CET(2B) - O(11B)3.52 Å

^{*} La liste des facteurs de structure a été déposée au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 32167: 15 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 INZ, Angleterre.

Fig. 2. (a) Projection de la molécule A parallèlement à l'axe Ox du repère D ainsi défini: origine du repère au centre de gravité du cycle D; axe x parallèle à la projection de [C(13), milieu de C(15)-C(16)] sur le plan moyen du cycle D et orienté positivement vers C(15)-C(16); axe y perpendiculaire à x dans le plan moyen du cycle D et orienté positivement vers C(14)-C(17); axe z perpendiculaire au plan xOy de manière à définir un trièdre direct. (b) Projection parallèlement à l'axe Oz du repère D. Les dessins ont été obtenus à l'aide du programme ORTEP, les ellipsoïdes d'agitation thermique étant à 50% de probabilité. (c), (d) Mêmes projections pour la molécule B.

Tableau 1. Paramètres atomiques $(\times 10^4)$ avec déviations standard

La numérotation des atomes est conforme à la numérotation standard aux particularités suivantes près: l'atome de carbone terminal du groupe éthyl-13 est noté MC(18), les deux atomes de carbone du groupe éthynyl sont notés CET(1) et CET(2), l'atome d'hydrogène de ce groupe étant noté H(CE2). Par ailleurs pour *chacune* des deux molécules la notation a ou b en ce qui concerne les atomes d'hydrogène se réfère à leur position α ou β , exception faite des atomes d'hydrogène portés par MC(18) pour lesquels la notation a, b, c est sans signification particulière. H(18C) et H(18D) sont les deux atomes d'hydrogène portés par C(18) et placés respectivement au-dessus des cycles C et D.

Molecule A	x	У	Z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}	В
C(1A)	7741 (2)	6146(3)	5910(7)	17(1)	28 (2)	246 (11)	0(1)	- 26 (3)	11 (4)	4,9
C(2A)	7415 (2)	6884 (3)	6068 (6)	14 (1)	31 (2)	177 (9)	-3(1)	- 15 (2)	16 (3)	4,1
C(3A)	7721 (2)	7632 (2)	5705 (4)	15 (1)	28 (1)	60(5)	3 (1)	1 (2)	1 (2)	2,9
C(4A)	8306 (2)	7627 (2)	5959 (5)	16(1)	27 (2)	102 (5)	1 (1)	2 (2)	8 (3)	3,4
C(5A)	8586 (2)	6973 (2)	6355 (4)	13 (1)	27 (1)	91 (5)	-1(1)	-3 (2)	7 (2)	3,0
C(6A)	9195 (2)	7017 (2)	6628 (5)	15 (1)	28 (2)	167 (8)	-3 (1)	-2(2)	26 (3)	3,9
C(7A)	9376(2)	6432(2)	7833 (4)	12(1)	28 (2)	103 (6)	-2 (1)	-4 (2)	9 (3)	3,0
C(8A)	9207 (1)	5594(2)	7389 (4)	12 (1)	25 (1)	60 (4)	-1 (1)	2(1)	6 (2)	2,5
C(9A)	8600(1)	5556(2)	7024 (4)	12(1)	24(1)	53 (4)	1 (1)	2 (1)	4 (2)	2,4
C(10A)	8322 (2)	6188(2)	6523 (4)	12 (1)	27 (2)	100 (5)	-1 (1)	-2 (2)	5 (3)	3,0
C(11A)	8318 (2)	4747 (2)	7103 (4)	11(1)	26(1)	78 (5)	-1(1)	-3(2)	2 (2)	2,7
C(12A)	8553 (2)	4151(2)	8246 (4)	13 (1)	23 (1)	70 (5)	-2(1)	1 (1)	5 (2)	2,6
C(13A)	9176 (2)	4136 (2)	8299 (4)	12(1)	26 (1)	64 (5)	0 (1)	2 (1)	8 (2)	2,6
C(14A)	9361(1)	4998 (2)	8613 (4)	12(1)	26(1)	56 (4)	1 (1)	-2(1)	5 (2)	2,5
C(15A)	9970 (2)	4931 (3)	9008 (5)	15 (1)	32 (2)	118 (7)	-3(1)	-11 (2)	14 (3)	3,6
C(16A)	10016 (2)	4108 (3)	9776 (5)	14 (1)	40 (2)	136 (7)	1 (1)	-13 (2)	27 (3)	4,0
C(17A)	9442 (2)	3712(2)	9708 (4)	15(1)	29 (2)	90 (5)	3 (1)	-3 (2)	16(3)	3,3
C(18A)	9433 (2)	3792 (3)	6822 (5)	15(1)	31 (2)	96 (6)	1 (1)	6 (2)	-3 (3)	3,4
MC(18A)	9212 (2)	2986 (3)	6260 (5)	29 (1)	31 (2)	134 (8)	1(1)	11 (3)	-19 (4)	4,9
CET(1A)	9145 (2)	3902 (3)	11147 (5)	19(1)	37 (2)	93 (6)	-1(1)	-10 (2)	18 (3)	3,9
CET(2A)	8933 (2)	4033 (4)	12315 (5)	29 (1)	64 (3)	85 (7)	-5 (2)	2 (3)	18 (4)	5,6
O(3A)	7476 (1)	8229 (2)	5290 (3)	16 (0)	28 (1)	121 (5)	6(1)	4 (1)	8 (2)	3,6
O(11A)	8323 (1)	4416 (2)	5572 (3)	21 (1)	34 (1)	77 (3)	-4(1)	-8 (1)	-2 (2)	3,7
O(17A)	9526 (1)	2882 (2)	9595 (4)	17 (1)	28 (1)	173 (5)	2 (1)	0 (1)	25 (2)	4,2

Tableau 1 (suite)

Molecule A	x	У	Z	В			x	У	Ζ	В
H(1)a	7630	5610	6170	3,9	H(14)		9170	5170	9770	1.6
H(1)b	7720	6080	4610	3.9	H(15)a		10030	5460	9690	2.7
H(2)a	7320	6850	7340	3,5	H(15)b		10150	4900	8050	27
H(2)b	7020	6810	5700	3,5	H(16)a		10090	4130	10780	2,7
H(2)	8370	8220	5960	2,2	H(16)b		10250	2770	0280	2,7
$\mathbf{U}(\mathbf{f})_{\alpha}$	0200	7500	5800	2,3	11(10)0		10350	3770	9380	2,9
$\Pi(0)a$	9290	7590	6600	3,0	H(18C)		9350	4190	5010	3,4
	9290	6900	5550	3,0	H(18D)		9840	3650	7030	3,4
H(7)a	9240	6600	8910	2,1	H(MC18)a		9140	2610	7150	4,3
H(7)b	9850	6440	7810	2,1	H(MC18)b		9480	2710	5560	4,3
H(8)	9350	5430	6410	1,4	H(MC18)c		8800	3060	5590	4,3
H(11)	7940	4790	7270	1,8	H(O11)		7940	4390	5230	2,7
H(12)a	8440	4260	9300	1,6	H(O17)		9240	2540	9690	3,2
H(12)b	8380	3630	8130	1,6	H(CE2)	8710	4150	13280	4,5
Molecule B	x	у	Ζ	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}	В
C(1 <i>B</i>)	7352 (2)	12306 (3)	6602 (5)	17 (1)	31 (2)	138 (7)	-3(1)	5 (2)	13(3)	4,0
C(2B)	7394 (2)	12937 (3)	5354 (5)	26 (1)	38 (2)	127 (7)	-13 (I)	3 (2)	10 (3)	4.8
C(3B)	7035 (2)	13625 (3)	5701 (5)	26 (1)	32 (2)	146 (8)	-9(1)	-31(3)	17(3)	4.8
C(4B)	6509 (2)	13445 (3)	6364 (5)	23(1)	29 (2)	140 (7)	ο (i)	-21(2)	-1(3)	4 4
C(5B)	6366 (2)	12696 (2)	6767 (4)	21(1)	30(2)	65 (5)	1 (i)	-11(2)	-7(2)	3 5
C(6B)	5792 (2)	12489 (3)	7262 (5)	19(1)	29(2)	116(7)	8(1)	2(2)	-8(3)	3,8
C(7R)	5626(2)	11693(2)	6558 (5)	14(1)	$\frac{2}{31}(2)$	101 (6)	6(1)	-2(2)	-2(3)	3,0
C(8R)	6015(2)	11034(2)	7050(4)	12(1)	26(1)	56 (4)	3(1)	-2(2)	-1(2)	2,4
C(9B)	6609 (2)	11004(2) 11202(2)	7034 (4)	12(1)	26(1)	35(4)	$\frac{3(1)}{1(1)}$	$\frac{2(1)}{1(1)}$	-1(2)	2,0
C(10R)	6764(2)	11292(2) 12048(2)	6783 (4)	17(1)	20(1)	55 (4)	1(1)	1(1)	-4(2)	2,5
C(10D)	7010(2)	12040(2)	7252 (4)	17(1)	29(2)	33(3)	1(1)	1(2)	-2(2)	3,0
C(11D)	7019(2)	10039(2)	7332 (4) 6200 (4)	12(1)	20(1)	$\frac{80(3)}{70(5)}$	0(1)	-2(2)	-1(2)	2,9
C(12B)	6930(1)	9890(2)	0399(4)	12(1)	24(1)	70(5)	1(1)	1(2)	0(2)	2,0
C(13D)	50(0(1))	9003(2)	0389 (4)	11(1)	25(1)	59 (4)	2(1)	-1(1)	-3(2)	2,4
C(14D)	5960(2)	10308 (2)	6012 (4)	12(1)	28(1)	05 (5)	2(1)	0(2)	1(2)	2,7
C(15B)	5398 (2)	9926(3)	5783(5)	$\frac{11(1)}{12(1)}$	33(2)	138(7)	3(1)	-7(2)	-11(3)	3,5
C(10B)	5535(2)	9104 (3)	5068 (5)	12(1)	35(2)	119(6)	1(1)	-10(2)	-12(3)	3,5
C(1/B)	6163 (5)	9036(2)	5038 (4)	14 (1)	30(2)	78 (5)	1(1)	-7(2)	-8 (3)	3,0
C(18B)	6174 (2)	9206 (2)	7941 (4)	14(1)	29(2)	77 (5)	1 (1)	0(2)	5 (2)	3,0
MC(18B)	6572 (2)	8594 (3)	8606 (5)	27 (1)	39 (2)	86 (6)	7 (1)	0 (2)	16 (3)	4,5
CET(1B)	6371 (2)	9336 (2)	3554 (4)	17 (1)	34 (2)	74 (5)	6 (1)	-6 (2)	-17(3)	3,4
CET(2B)	6509 (2)	9577 (3)	2360 (5)	22 (1)	58 (2)	74 (6)	9 (1)	-3 (2)	-16(3)	4,7
O(3 <i>B</i>)	7166 (2)	14307 (2)	5340 (5)	28 (1)	39 (1)	282 (8)	-12(1)	-39 (2)	41(3)	6,6
O(11 <i>B</i>)	6971(1)	10440(2)	8949 (3)	18 (1)	33 (1)	71 (3)	1 (1)	-14(1)	1 (2)	3,4
O(17 <i>B</i>)	6319(1)	8224 (2)	5213 (3)	15(1)	28(1)	124 (4)	0(1)	-8 (1)	-11(2)	3,5
	x	у	Z	В			x	У	Ζ	В
H(1)a	7630	11890	6480	3.0	H	14)	6070	10460	5000	1.8
H(1)b	7500	12530	7500	3.0	нČ	15)a	5100	10220	5000	2.4
H(2)a	7240	12670	4220	3.8	H(15)b		5200	9850	6950	2.4
H(2)b	7750	13200	5150	3.8	H	16)a	5360	8990	4100	2.6
H(4)	6200	13950	6600	2,3	H(16)b		5290	8670	5780	2,0
H(6)a	5500	12880	6980	2,5	H(18C)		6110	9630	8750	2,0
H(6)b	5800	12340	8440	2,7	H(18D)		5800	8800	7070	2,1
H(7)a	5600	11730	5470	2,7	$H(MC18)_{\alpha}$		6720	8200	7800	2,1
H(7)b	5150	11580	6640	2,4	H(MC18)a		6010	8000	8820	3,0 2 4
H(8)	5050	10040	8200	2,4			6470	0900	0600	3,0 2 4
H(11)	5950 7450	10000	0200	1,5		H(MC18)C		0420	9090	3,0
$H(12)_{0}$	7430	101/0	1200	1,9			1340	10020	9230	2,4
U(12)u	7000	10100	5310	1,5	H(0800	8280	5160	2,6
11(12)0	/150	9400	0/20	1,5	H((EZ)	0000	9020	1250	3,4

[H(CE2)–O(11B) 2,61 Å], CET(2B)–H(CE2)– O(11B) 150°. La liaison O(11B) \cdots O(3A) montre une certaine contrainte [angle O(11B)–H(O11)–O(3A) de 125°], par ailleurs la liaison à caractère hydrogène CET(2B) \cdots O(11B) est faible.

Il faut noter également un contact directionnel C-H... éthynyl particulièrement court: C(11B)(x,y,z)-

H(11)...CET(2B) $(\frac{3}{2} - x, 2 - y, \frac{1}{2} + z)$: H(11)-CET(2B) 2,62 Å, C(11B)-H(11)-CET(2B) 155°, H(11)-CET(2B)-CET(1B) 103°.

La Fig. 2(a) et (b) illustre les conformations générales des molécules A et B. La Fig. 3(a) et (b)montre l'organisation cristalline. Il est à noter que contrairement à l'organisation du complexe RU2732-

Fig. 3. (a) Projection de la structure selon l'axe c. (b) Projection de la structure selon l'axe b.

éthanol, l'organisation de cette deuxième forme cristalline met en évidence des feuillets moléculaires qui ne sont reliés, entre eux, que par des contacts de type van der Waals. Les auteurs remercient la société Roussel Uclaf et particulièrement M R. Bucourt et Mme G. Azadian-Boulanger de leur avoir procuré un échantillon de ce stéroïde.

Discussion

La connaissance de trois molécules cristallographiquement indépendantes pour le composé RU2732 et la constatation de différences importantes entre conformations générales confèrent à cette étude un intérêt particulier. Une discussion détaillée la concernant sera prochainement publiée dans un article de synthèse concernant notamment le composé RU2657 dont les premiers résultats sont consignés dans l'article ci-après (Mornon, Lepicard & Delettré, 1974).

Références

- LEPICARD, G., DELETTRÉ, J. & MORNON, J.-P. (1977). Acta Cryst. B33, 615–618.
- MORNON, J.-P., DELETTRÉ, J., LEPICARD, G., BALLY, R., SURCOUF, E. & BONDOT, P. (1977). J. Steroid Biochem. A paraître.
- MORNON, J.-P., LEPICARD, G. & DELETTRE, J. (1974). Acta Cryst. B30, 2754–2756.